direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C23.11D4, C24.93D4, C25.30C22, C23.290C24, C24.649C23, C23.144(C2×D4), (C22×C4).366D4, C23.369(C4○D4), (C23×C4).321C22, (C22×C4).495C23, C22.173(C22×D4), C22.163(C4⋊D4), C2.C42⋊54C22, C22.78(C4.4D4), C22.33(C42⋊2C2), C22.102(C22.D4), (C22×C4⋊C4)⋊14C2, (C2×C4).291(C2×D4), C2.10(C2×C4⋊D4), C2.8(C2×C4.4D4), (C2×C4⋊C4)⋊107C22, C2.6(C2×C42⋊2C2), C22.170(C2×C4○D4), C2.8(C2×C22.D4), (C2×C2.C42)⋊26C2, (C22×C22⋊C4).20C2, (C2×C22⋊C4).485C22, SmallGroup(128,1122)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C23.11D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ebe-1=bc=cb, bd=db, fbf-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >
Subgroups: 820 in 410 conjugacy classes, 148 normal (16 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C24, C24, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C23×C4, C23×C4, C25, C2×C2.C42, C2×C2.C42, C23.11D4, C22×C22⋊C4, C22×C22⋊C4, C22×C4⋊C4, C2×C23.11D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, C22×D4, C2×C4○D4, C23.11D4, C2×C4⋊D4, C2×C22.D4, C2×C4.4D4, C2×C42⋊2C2, C2×C23.11D4
(1 29)(2 30)(3 31)(4 32)(5 23)(6 24)(7 21)(8 22)(9 59)(10 60)(11 57)(12 58)(13 19)(14 20)(15 17)(16 18)(25 42)(26 43)(27 44)(28 41)(33 56)(34 53)(35 54)(36 55)(37 63)(38 64)(39 61)(40 62)(45 51)(46 52)(47 49)(48 50)
(1 3)(2 46)(4 48)(5 63)(6 43)(7 61)(8 41)(9 42)(10 64)(11 44)(12 62)(13 15)(14 35)(16 33)(17 19)(18 56)(20 54)(21 39)(22 28)(23 37)(24 26)(25 59)(27 57)(29 31)(30 52)(32 50)(34 36)(38 60)(40 58)(45 47)(49 51)(53 55)
(1 47)(2 48)(3 45)(4 46)(5 9)(6 10)(7 11)(8 12)(13 36)(14 33)(15 34)(16 35)(17 53)(18 54)(19 55)(20 56)(21 57)(22 58)(23 59)(24 60)(25 37)(26 38)(27 39)(28 40)(29 49)(30 50)(31 51)(32 52)(41 62)(42 63)(43 64)(44 61)
(1 55)(2 56)(3 53)(4 54)(5 61)(6 62)(7 63)(8 64)(9 44)(10 41)(11 42)(12 43)(13 49)(14 50)(15 51)(16 52)(17 45)(18 46)(19 47)(20 48)(21 37)(22 38)(23 39)(24 40)(25 57)(26 58)(27 59)(28 60)(29 36)(30 33)(31 34)(32 35)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 38 47 26)(2 37 48 25)(3 40 45 28)(4 39 46 27)(5 16 9 35)(6 15 10 34)(7 14 11 33)(8 13 12 36)(17 60 53 24)(18 59 54 23)(19 58 55 22)(20 57 56 21)(29 64 49 43)(30 63 50 42)(31 62 51 41)(32 61 52 44)
G:=sub<Sym(64)| (1,29)(2,30)(3,31)(4,32)(5,23)(6,24)(7,21)(8,22)(9,59)(10,60)(11,57)(12,58)(13,19)(14,20)(15,17)(16,18)(25,42)(26,43)(27,44)(28,41)(33,56)(34,53)(35,54)(36,55)(37,63)(38,64)(39,61)(40,62)(45,51)(46,52)(47,49)(48,50), (1,3)(2,46)(4,48)(5,63)(6,43)(7,61)(8,41)(9,42)(10,64)(11,44)(12,62)(13,15)(14,35)(16,33)(17,19)(18,56)(20,54)(21,39)(22,28)(23,37)(24,26)(25,59)(27,57)(29,31)(30,52)(32,50)(34,36)(38,60)(40,58)(45,47)(49,51)(53,55), (1,47)(2,48)(3,45)(4,46)(5,9)(6,10)(7,11)(8,12)(13,36)(14,33)(15,34)(16,35)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,37)(26,38)(27,39)(28,40)(29,49)(30,50)(31,51)(32,52)(41,62)(42,63)(43,64)(44,61), (1,55)(2,56)(3,53)(4,54)(5,61)(6,62)(7,63)(8,64)(9,44)(10,41)(11,42)(12,43)(13,49)(14,50)(15,51)(16,52)(17,45)(18,46)(19,47)(20,48)(21,37)(22,38)(23,39)(24,40)(25,57)(26,58)(27,59)(28,60)(29,36)(30,33)(31,34)(32,35), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,38,47,26)(2,37,48,25)(3,40,45,28)(4,39,46,27)(5,16,9,35)(6,15,10,34)(7,14,11,33)(8,13,12,36)(17,60,53,24)(18,59,54,23)(19,58,55,22)(20,57,56,21)(29,64,49,43)(30,63,50,42)(31,62,51,41)(32,61,52,44)>;
G:=Group( (1,29)(2,30)(3,31)(4,32)(5,23)(6,24)(7,21)(8,22)(9,59)(10,60)(11,57)(12,58)(13,19)(14,20)(15,17)(16,18)(25,42)(26,43)(27,44)(28,41)(33,56)(34,53)(35,54)(36,55)(37,63)(38,64)(39,61)(40,62)(45,51)(46,52)(47,49)(48,50), (1,3)(2,46)(4,48)(5,63)(6,43)(7,61)(8,41)(9,42)(10,64)(11,44)(12,62)(13,15)(14,35)(16,33)(17,19)(18,56)(20,54)(21,39)(22,28)(23,37)(24,26)(25,59)(27,57)(29,31)(30,52)(32,50)(34,36)(38,60)(40,58)(45,47)(49,51)(53,55), (1,47)(2,48)(3,45)(4,46)(5,9)(6,10)(7,11)(8,12)(13,36)(14,33)(15,34)(16,35)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,37)(26,38)(27,39)(28,40)(29,49)(30,50)(31,51)(32,52)(41,62)(42,63)(43,64)(44,61), (1,55)(2,56)(3,53)(4,54)(5,61)(6,62)(7,63)(8,64)(9,44)(10,41)(11,42)(12,43)(13,49)(14,50)(15,51)(16,52)(17,45)(18,46)(19,47)(20,48)(21,37)(22,38)(23,39)(24,40)(25,57)(26,58)(27,59)(28,60)(29,36)(30,33)(31,34)(32,35), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,38,47,26)(2,37,48,25)(3,40,45,28)(4,39,46,27)(5,16,9,35)(6,15,10,34)(7,14,11,33)(8,13,12,36)(17,60,53,24)(18,59,54,23)(19,58,55,22)(20,57,56,21)(29,64,49,43)(30,63,50,42)(31,62,51,41)(32,61,52,44) );
G=PermutationGroup([[(1,29),(2,30),(3,31),(4,32),(5,23),(6,24),(7,21),(8,22),(9,59),(10,60),(11,57),(12,58),(13,19),(14,20),(15,17),(16,18),(25,42),(26,43),(27,44),(28,41),(33,56),(34,53),(35,54),(36,55),(37,63),(38,64),(39,61),(40,62),(45,51),(46,52),(47,49),(48,50)], [(1,3),(2,46),(4,48),(5,63),(6,43),(7,61),(8,41),(9,42),(10,64),(11,44),(12,62),(13,15),(14,35),(16,33),(17,19),(18,56),(20,54),(21,39),(22,28),(23,37),(24,26),(25,59),(27,57),(29,31),(30,52),(32,50),(34,36),(38,60),(40,58),(45,47),(49,51),(53,55)], [(1,47),(2,48),(3,45),(4,46),(5,9),(6,10),(7,11),(8,12),(13,36),(14,33),(15,34),(16,35),(17,53),(18,54),(19,55),(20,56),(21,57),(22,58),(23,59),(24,60),(25,37),(26,38),(27,39),(28,40),(29,49),(30,50),(31,51),(32,52),(41,62),(42,63),(43,64),(44,61)], [(1,55),(2,56),(3,53),(4,54),(5,61),(6,62),(7,63),(8,64),(9,44),(10,41),(11,42),(12,43),(13,49),(14,50),(15,51),(16,52),(17,45),(18,46),(19,47),(20,48),(21,37),(22,38),(23,39),(24,40),(25,57),(26,58),(27,59),(28,60),(29,36),(30,33),(31,34),(32,35)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,38,47,26),(2,37,48,25),(3,40,45,28),(4,39,46,27),(5,16,9,35),(6,15,10,34),(7,14,11,33),(8,13,12,36),(17,60,53,24),(18,59,54,23),(19,58,55,22),(20,57,56,21),(29,64,49,43),(30,63,50,42),(31,62,51,41),(32,61,52,44)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | 2Q | 2R | 2S | 4A | ··· | 4X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 |
kernel | C2×C23.11D4 | C2×C2.C42 | C23.11D4 | C22×C22⋊C4 | C22×C4⋊C4 | C22×C4 | C24 | C23 |
# reps | 1 | 3 | 8 | 3 | 1 | 4 | 4 | 20 |
Matrix representation of C2×C23.11D4 ►in GL7(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 4 | 0 | 0 | 0 | 0 |
0 | 3 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 |
4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 2 | 0 | 0 | 0 | 0 |
0 | 4 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 0 | 2 | 0 |
G:=sub<GL(7,GF(5))| [4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,3,3,0,0,0,0,0,4,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,0,4,4,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,3,0] >;
C2×C23.11D4 in GAP, Magma, Sage, TeX
C_2\times C_2^3._{11}D_4
% in TeX
G:=Group("C2xC2^3.11D4");
// GroupNames label
G:=SmallGroup(128,1122);
// by ID
G=gap.SmallGroup(128,1122);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,758,723,100]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*b*e^-1=b*c=c*b,b*d=d*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations